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FNOL3, A COMPUTER PROGRAM 
TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS 

I. INTRODUCTION 

This report describes a computer program FNOL3 for the numerical integration 

of ordinary differential equations with initial conditions.  These equations are 

reduced by the user to a system of first order, simultaneous, ordinary differential 

equations with initial conditions and are solved by using fourth order Runge-Kutta 

and fourth order Adams-Moulton predictor-corrector methods.  FN0L3 is the successor 

to the Naval Ordnance Laboratory ordinary differential equation solver FN0L2 

and uses many features familiar to users of FN0L2 (the differences are provided 

in Appendix E).  See reference (a). 

FN0L3 is formulated so as to be quite separate from any particular application. 

Options make available a convenient flexible package that can be used whenever the 

problem is expressible as a system of equations as described above. 

The program is written in the FORTRAN IV language for the operating system 

currently used on the Laboratory's CDC 6400 computer. 

II. DESCRIPTION OF THE METHODS 

The discussions that follow in this section and in Section III are taken 

from reference (b).  The notation used omits commas from subscripts (f. ) except 

when there might be an ambiguity (f   .).  Y is used for true values of the 

dependent variable and y for computed values. 

Let the system of equations to be solved be given in the form: 

^1"% -fi<X»yl'y2 %) 1-1,2,...,11     (la) 

y±(x0) - y1Q i = 1.2 H     (lb) 

T - T(x,y1,y2,...)yN,y
,
1,y'2,...,y'N) - 0 (lc) 
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where T is the termination condition and yin»y<>n»•••>yNn are the initial 

conditions at x » x_. 

Let y.  be the value of y. and f.  be the value of f. at x=x .  Let h be 
in J± in in 

the step size in the independent variable x.  The Runge-Kutta method uses the 

following formulae with the appropriate initial conditions to go from step n to 

step n+1. 

kil= fi(V*ln"-">rlln) 1=1'2 N     (2a) 

ki2 " fi(xn+'5h'ym+1'5hkll yMn4,*kNl) * =  l»2 N     (2b) 

ki3 " fi(xn+,5h,yln"H*k12 yNn+ishkN2) * =  1»2 N     (2c) 

ki4 * fi(xn+h,yln+hk13,-"'yNn+hkN3) 1 = W,...Ji     <2d> 

y±,^l m yiA^±l+2ki2+2\3+kU) i = l,2,...,N     (2e) 

The Adams-Moulton predictor-corrector method uses the following formulae 

to compute the values of yJ  ,, using the values of y.   n, y.   n, yJ   _, and 'i,n+l    ° Ji,n-3 '1,11-2'  i,n-l 

yin- 

yi!i+l " 
yin+Ä<35fltt-

5Wl,n-l+37£1^2-9fl,n-3)   i " L'2""'N    <3a> 

yK+l " yin
+2V9fl!ifl+19£l«-5fi.n-l+Il,n-2)     * " l«2 N    (3b) 

where the values of y  at x-, x«, and x_ are found by using the Runge-Kutta 

formulae.  x, is the first point at which the Adams-Moulton method is used. 

Observe that the Adams-Moulton formulae only require two derivative 

evaluations to go to the next step.  The Runge-Kutta method requires four deri- 

vative evaluations for each step. 

III.  THE ERROR TERMS 

We will assume in this section only one ordinary differential equation, so 

the i from yJ     and f.  is omitted.  The error term for the Adams-Moulton method J in     in 

is as follows: 
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y(nll -  ^«V^n-l+^^W <la> 

yn+i -  V2-4<9fSl+19fn-5fn-l+fn-2> <lb> 

where p stands for predicted value and c for corrected value,  f L.  means n+l 

calculate f at x ,. using y ,{. n+l    e ^n+1 

If the calculated values of y ,y-,...,y and accordingly, of f,f«,...,f 

were exactly correct, then the true ordinate at x , - , say Y ., would satisfy the 
n+l      n+l 

equations 

\+l " V2"l
(55fn-59fn-l+37fn-2-9fn-3)+27i h' ^(51> (2a) 

Vl ■ V2^<9W19V5fn-l+fn-2>  " ^ h' y^2> (2b) 

where C-, and £0 both lie between x ~ and x ...  y (£..) is the fifth derivative 1     I n-J     n+l      1 

of y at x = £ .  So it follows from (1) and (2) that 

W& " §§§ h5 yV^i> 

Let F(xn+1>Y
n+1)  =  fn+l^Xn+l,Yn+l^ '   aPP1?111^  the   law of   the mean 

f xi - f (£i ■ F<x _Li >Y xi) - F<x a.1 >y(!i) ■ <Y o.i-y(^])F <x xi »n xi^ n+l   n+l     n+l n+l      n+l"n+l     n+l 7n+l y n+l n+l (4) 

where n ,, is between Y ,_ and y ,n. n+l n+l    Jn+1 

It is assumed that h is sufficiently small to ensure that 

iMyvi'Wl <K
 

x (5) 

and also  that y   (x)   does not vary strongly  for  x _~ <  x <     x so  that y  (£   ) 

and y   (£„)   can be  equated.     Equations   (3)   lead  to  the  useful  approximate   relation 

720(Y      _y(P))  . h5    V 
25r n+l yn+l; y  w 

n+l      yn+l        8^n+l yn+l'   V n+l'  n+l;   ^720M251M n+l yn+l; 

n+l yh+l     l 8    yUttfl'Vr       251M n+l yn+l' 
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so from (5) 

Y _y(c)^__19_      (p)j 
n+1  yn+l    251^ n+1 yn+r 

Y + _IIY   s y(c) + JL9. (p) 
n+1  251 n+1  yn+l  251 yn+l 

270     -270  (c)   19  (c) , 19  (p) 
251 n+1 " 251 yn+l " 251 yn+l  251 yn+l 

Therefore, 

Yn+l = yn+l + 14 (yn+l " W (6) 

This is the equation programmed when the Adams-Moulton method is selected. 

The fourth order Runge-Kutta formulae are 

k- - f(x ,y ) (7a) 
I     n n 

k~ « f(x +^h,y +4>hk.) (7b) i n    n   1 

k. ■ f(x 4^h,y +^hkj (7c) 
5 n    n   I 

k. = f(x +h,y +hkj (7d) 
H n   n   J 

yn+l " ^n 
+ l(kl+2k2+2W • (7e) 

No simple expressions are known for the precise trunc^ion errors in the 

preceding formulae.  An estimate of the error can be obtained, in practice, 

in the following way.  Let the truncation error associated with a formula of 

4th-order accuracy in advancing from x to that at x ,. s x + h in a single J n n+1   n 

step be denoted by c h .  Also suppose that c varies "slowly" with n and is 

nearly independent of h when h is small.  Then if the true value of y at x - 

is denoted by Y   , the value obtained by two steps starting at x _ by y   , 

and the value obtained by a single step with doubled spacing 2h by y  ., there 

follows approximately 
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Vi - '2* = 2cnh5 <8a> 

Vi - y™ s cn<2h>5 <8b> 
when h is small. 

From equation (8b) 

v +1 - y(?h) = 25c h5 n+1  'n+l      n 

so 

Y   -y(2h)=24(Y  -y(h)) n+1  yn+l   L   un+l 
yn+r 

Therefore, (h)  (2h) 

Ä  (h)  
yn+l yn+l m 

n+1 ~ yn+l *    15 w 

This is the equation programmed when the Runge-Kutta method is selected. 

IV.   AUTOMATIC ADJUSTMENT OF STEP SIZE 

FN0L3 has the option of automatically varying the step size h, to hold 

the truncation errors within bounds fixed by the user.  The absolute truncation 

errors for the Adams-Moulton method from III-6 are 

A_   
yi,n+l yi,n+l .   i o    v AE± = —* ^  i=l,2,...,N     (i) 

and the relative truncation errors are 

AE 
RE1 --^J— 1 ■ 1,2 N     (2) 

yi,n+l 

The absolute truncation errors for the Runge-Kutta method from III-9 are 

v<h>  -y<
2h> 

AEt- ^"
+y."+l i-l,2,...,N    (3) 

and the relative truncation errors are 

AE. 
RE± = ^ i = 1,2,...,N    (4) 

yi,n+l 
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To determine the step size at each step, let E ,E2,...,E be the errors 

whether they are absolute or relative errors and let XNE be a step size control 

parameter (see page 8).  Then if 10_XNE"3 < |E | < 10_XNE for i = 1,2,...,N, 

the step size is not changed.  But if |E | < 10~  " for all i, then let 

-XNE-1.5 
HB = minimum — — > 1 (5) 

i   |E 1+10 

and the step size is increased to HBr* • h.  If |E.| > 10    for some j then 

-XNE-1.5 
HB - minimum — rr- < 1 (6) 

j    lEjl+10"11 

and the step size is decreased to HB^- h. 



NOLTR 71-2 

V.    PROGRAMMING 

The user must write a calling program hereafter called MAIN, and three 

auxiliary subprograms.  The latter are usually called DERIV, TERM, and OUTPUT 

and are described later in this section.  Besides calling on FN0L3 and providing 

it with initial values, MAIN must contain an EXTERNAL card which denotes that 

DERIV, TERM and OUTPUT are the names of subprograms, not variables. 

The calling sequence for FN0L3 is 

EXTERNAL DERIV, TERM, OUTPUT 
CALL FN0L3 (J,N,G,L,M,XNE,X,Y,D,DERIV,TERM,OUTPUT) 

J:    (INPUT,INTEGER) 

This parameter indicates the integration method. 

J = 1 Use Runge-Kutta method of integration to termination.  Truncation 

errors are not calculated; the step size G is not adjustable. 

J = 2 Use Runge-Kutta for the first three steps, then Adams-Moulton 

for the remainder of the interval of integration.  Truncation errors 

are calculated.  The step size is adjustable unless XNE =0.  If the 

step size is adjusted, new starting values are obtained through the 

Runge-Kutta method. 

J = 3 Use Runge-Kutta throughout.  The truncation errors are calculated; 

the step size is adjustable unless XNE ■ 0. 

N:    (INPUT,INTEGER) 

This is the number of simultaneous first order differential equations 

to be solved.  The maximum number of equations is 30. 

G:    (INPUT,REAL) 

This is the initial step size; upon return from FN0L3, G retains its 

original value. 
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L:    (INPUT,INTEGER) 

This is the number of Y's beyond (N+3) to be written in the routine 

OUTPUT.  These additional Y's should be calculated in the routine 

TERM, beginning with Y(N+3+l) to Y(N+3+L). 

M:    (INPUT,INTEGER) 

This is the number of accepted steps taken between calls to routine 

OUTPUT.  If M ■ 0, then printing is determined by values assigned to 

Y(N+1) andY(N+2).  Y(N+1) = f (X,Y(1) ,. . . ,Y(N) ,D(1) ,. .. ,D(N)) and is 

defined in routine TERM.  To generate a call to OUTPUT, Y(N+1) must 

change by an amount greater than Y(N+2) since the last call to OUTPUT. 

Y(N+2) is assigned a constant value in the routine which calls FN0L3. 

XNE:  (INPUT,REAL) 

This is the step size control.  The step size is unchanged if the worst 

-XNE-3  -XNE 
of all the errors lies within the window [10     ,10    ].  The step 

size is increased if the errors are all less than 10     .  The step 

size is decreased if for some differential eauation the error is greater 

than 10 

If Y(N+3) < 0. and XNE 4  0., the automatic adjustment of the step 

size is a function of the absolute errors. 

If Y(N+3) = 0. and XNE ±  0., the automatic adjustment of the step 

size is a function of the relative errors. 

If Y(N+3) = £ > 0. and XNE ^ 0., the automatic adjustment of the 

step size is a function of the relative errors where the relative 

errors are equal to the absolute errors divided by the maximum 

(Y(N+3), |Y(I)|).  This option removes the possibility of using 

"small" functional values to compute relative error, otherwise this option 

is identical to the previous option and is to be preferred over it. 

8 
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If XNE ■ 0., the step size G is not adjustable. 

X:    (INPUT,OUTPUT,REAL) 

This is the independent variable.  An initial value must be specified 

before calling FN0L3.  FN0L3 will return with X,the terminal value of 

the independent variable. 

Y:    (INPUT,OUTPUT,REAL) 

This is the name given the solution array.  Y must be dimensioned at 

least Y(N+3+L).  Initial values for Y(l),Y(2),...,Y(N) must be 

specified before calling FN0L3.  If L > 0, then Y(N+3+l),...,Y(N+3+L) 

may be used to calculate additional values in the routine TERM.  Upon 

returning from FN0L3, Y(l),...,Y(N),Y(N+3+l),...,Y(N+3+L) have the 

values computed at the terminal value of X. 

D:    (OUTPUT,REAL) 

This is the name given to the array where the derivatives are stored 

and must be defined in routine DERIV.  D should be dimensioned D(N). 

Upon returning from FN0L3, D(l),...,D(N) have the values computed at 

the terminal value of X. 

DERIV: 

In this routine the user must compute the N derivatives.  The general 

form is 

SUBROUTINE DERIV (X,Y,D) 
DIMENSION Y(1),D(1) 
D(l) = ... 
D(2) = ••• 

D(N) = 
RETURN 
END 
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No D beyond D(N) should be calculated.  If desired, additional data may 

be passed between this routine and the other user written routines via 

COMMON statements. 

TERM: 

The user evaluates the termination criterion (T = T(X,Y(1),...,Y(N) , 

D(l),...,D(N)) in this routine.  Auxiliary values such as Y(N+1) and 

those required for plotting purposes should be calculated here because 

this routine is entered only once per accepted step before termination. 

A termination loop of at most four iterations starts when T undergoes 

a change of sign.  After the very first step of the integration, 

termination may occur without looping when |T| < 10 

The general form is 

SUBROUTINE TERM (X,Y,D,T) 
DIMENSION Y(1),D(1) 
T = ... 

RETURN 
END 

OUTPUT: 

This user routine is entered at the beginning and end of the complete 

integration.  If M +  0, it is entered every Mth accepted step.  If 

M = 0 then Y(N+1) and Y(N+2), discussed under parameter M determine 

the print frequency. 

The general form is 

SUBROUTINE OUTPUT (X,Y,D,ERROR,N,L,H) 
DIMENSION Y(1),D(1),ERR0R(1) 

» 
PRINT ••• 

RETURN 
END 

X,Y,D,N, and L are the same as in the calling sequence of FN0L3. 

ERROR is the name given the array which contains the absolute errors. 

in 
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H is the step size used to get to the present step.  If the magnitude of a 

new step size becomes less than H - 10~ * |x| + 10   , then two 

steps are taken using the Runge-Kutta method with step size equal to 

H- or -H. depending on the direction of integration.  If the errors 

are too large, the two steps will be accepted and two more steps are 

taken using the Runge-Kutta method with a step size computed in the 

same way as above using the current x.  If the errors are still too 

large after the above procedure is done ten times, then an error 

message is written and the program stops after going to OUTPUT.  If 

at any step the errors are not too large, then FN0L3 continues in the 

normal manner after resetting the counter back to zero. 

11 
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VI.   EXAMPLES 

The examples section of this report contains three problems which illustrate 

the available options of FN0L3. 

Example No. 1 

Solve the first order linear differential equation 

-^ = wA COS(O)X) 
dx 

in  the  interval   [0,3TT]   for  the initial condition 

y(0)  =  0 

Choose the case u = A = 1. 

Use the three available methods of FN0L3 to numerically integrate the given 

differential equation over [0,3TT] . 

(I) Use the fourth order Runge-Kutta method with a constant step size 

of .1. 

(II) Use the fourth order Adams-Moulton predictor-corrector formulae 

with an adjustable step size to hold the relative truncation error in the window 

[10_8,10-5]. 

(III) Use the fourth order Runge-Kutta method with an adjustable step 

—8   —5 
size to hold the relative truncation error in the window [10  ,10  ]. 

The analytic solution of the given equation with respect to the given initial 

condition is 

y(x) * A sin(wx). 

The actual value of sin(x) is computed for each x and compared to the calculated 

value of the solution.  At every fifth accepted step, the solution, sin(x), and 

12 
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the difference of the actual and calculated solutions are printed.  These results 

are in Table 1. 

The main (calling) program and the necessary subroutines to accomplish the 

solution of the stated problem in the manner indicated are in Appendix A. 

Example No. 2 

Solve the second order linear differential equation 

A   2 

dx 

in  the  interval   [0,5TT]   for  the  initial conditions 

y(0)  ■  0 

y'(0) = 1 

Reduce the second order linear differential equation to a system of two first 

order equations 

dy, 

•dir* ?2 

^2 
dx * ~yl 

with the initial conditions 

y^O) = 0 

y2(0) = 1 

Use the Adams-Moulton predictor-corrector method to integrate the given 

differential equations over [0,5TT].  An adjustable step size is used with size 

determined by 

(I) Relative truncation error 

(II) Absolute truncation error 

13 
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-8  —5 
The error window is [10  ,10  ]. 

Two types of printing options are illustrated in this example 

(I) Printing every kth step (10 in this example) 

(II) Printing when the independent variable has changed by a pre-selected 

amount (1 in this example) 

The analytic solution of the given equation with respect to the given 

initial conditions is 

y(x) - sin(x) 

The actual value of sin(x) is computed for each x and compared to the calculated 

value of the solution. At every print cycle the solution, sin(x), and the 

difference of the actual and calculated solutions are printed.  These results 

are in Table 2. 

The main (calling) program and the necessary subroutines to accomplish the 

solution of the stated problem in the manner indicated are in Appendix B. 

Example No. 3 

Solve the system of first order linear differential equations 

dyi 
-r1- y, (1) dx '2 

dy2 

-i - -*i (2) 

dy, 

dx "   (x+1 "    ) y3 

dy4 

"17 - y4 " xfl 

dy5_   s 

dx      x+1 

(3) 

(4) 

(5) 

14 
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in  the  interval   [0,5TT]   for  the  initial conditions 

y^O)   =  0 

y2(0) = 1 

y3(0) = l 

yA(0) - i 

y5(0) =» o 

Use the Adams-Moulton predictor-corrector method to integrate the given 

system of differential equations over [0,5TT].  An adjustable step size is used 

—8  -5 
with size adjusted to hold the relative truncation error in the window [10  ,10  ] 

Printing occurs every 40 accepted steps.  The analytic solutions of the 

given equations with respect to the given initial conditions are 

y^x) = sin(x) 

y2(x) = cos(x) 

y3(x) = (x+l)e'x 

v 
y^(x) = x+e 

y5(x) - loge(x+l) 

The actual values of the solutions are computed at each x and compared to 

the calculated values of the solutions. At each print cycle the actual solutions, 

calculated solutions, and differences are printed.  These results are in Table 3. 

The main (calling) program and the necessary subroutines to accomplish 

the solution of the stated problem in the manner indicated are in Appendix C. 

15 
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VII.  REMARKS 

Some suggestions and warnings are in order based on the years of experience 

with previous versions of this routine.  This version of FN0L3 is a conversion 

from the IBM 7090, and what was one auxiliary routine with multiple entries 

has been changed to three auxiliary routines.  In addition, double precision 

has been deemed unnecessary due to the increased precision of the CDC 6400. 

J:   Adams-Moulton is the prime method of this routine, but Runge-Kutta is 

needed to start, and whenever the time step changes.  Adams-Moulton 

requires only 2 entries into DERIV per time step while Runge-Kutta 

requires 4. 

L«   This parameter is a hangover from previous versions of FN0L3 in which the 

user did not write an OUTPUT routine but simply specified how many (L) 

auxiliary values were to be printed. 

M:   FN0L3 always prints initial and final values even if M has been set to 

some very large value.  However, some output is always needed to shed 

light on how the integration has proceeded. 

Printing at specified intervals cannot be insured except by fixed 

timesteps or terminating and then printing.  Setting M = 0 and 

Y(N+2)=DELTAY in MAIN and Y(N+1)-Y(1) in TERM, only causes no printing 

until Y(l) changes by at least Y(N+2).  To force printing at exact 

intervals of Y(N+2) in Y(l), put FN0L3 in a loop in MAIN and in TERM set 

T-Y(l)-C.  In MAIN set C=Y(l)+Y(N+2) before calling FN0L3.  C may be 

transmitted via the Y array or through COMMON.  The final value of Y(l) of 

each integration becomes the initial value for the next integration. 

Y:   Unless COMMON is used, additional parameters necessary for computation 

should be sent from routine to routine through the Y array in locations 

starting with Y(N+4).  If M 4  0 then Y(N+1) and Y(N+2) are available 

16 
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to the programmer.  If XNE - 0 then Y(N+3) is available.  In other 

cases these three locations have special meaning.  See the discussions 

on M and XNE above and in Section V. 

D:     We repeat here for emphasis.  DO NOT USE a D beyond D(N)!  In all we 

have said, there is an assumption that the derivatives can be computed 

explicitly from X and the current Y values.  If this is not so, the 

alternative is to perform root-finding within DERIV.  If the routine 

that calls FN0L3 initializes the D array, these values will be available 

in DERIV.  However, unless they are saved in another array, each time 

DERIV is entered, the previous D's are lost. 

ERROR:  At the start of an integration or whenever the step size changes, the 

absolute truncation errors are not computed directly for the first 

step.  Runge-Kutta is called at that time, and its error term requires 

having y.  ,. and y  '   t   see equation IV-3.  The first term, y.  ,_ , 
l,n+i     i,n+l l,n+l 

means reaching x   by taking two steps of size h, while the second 

term, y.  ' , means reaching x  . by taking one step of size 2h.  It 

is only after these three steps are taken that an error term can be 

computed.  Accepting or rejecting the first step is based on this error, 

which is then treated as if it were the first error.  At least three 

Runge-Kutta steps of size h are taken before Adams-Moulton takes over. 
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program and writeup.  A number of improvements were made on the basis of their 
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NOLTR 71- ■2 

TABLE 1 

-r~ ■ uiA cos( 
dx 

tox) 

Method (I) 

YT-TRUE YOCOMPUTED 
sin(x) sin(x) 

0.0 0.0 

.479426 .479426 

.841471 .841471 

.997495 .997495 

.909297 .909297 

.598472 .598472 

.141120 .141120 

-.350783 -.350783 

-.756802 -.756803 

-.977530 -.977530 

-.958924 -.958924 

-.705540 -.705540 

-.279415 -.279416 

.215120 .215120 

.656987 .656987 

.938000 .938000 

.989358 .989358 

.798487 .798487 

.412118 .412118 
on 1ft-9 i* ,n-9 

(YT-YC) 

0.0 

-17x10 

-29x10 

-35x10 

-32x10 

-21x10 

-49x10 

12x10 

26x10 

34x10 

33x10 

25x10 

97x10 

-75x10 

-23x10 

-33x10 

-34x10 

-28x10 

-14x10 

17x10 

-9 

-9 

-9 

-9 

-9 

-10 

-9 

-9 

-9 

-9 

-9 

-10 

-10 

-9 

-9 

-9 

-9 

-9 

-10 
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0.0 

0.5 

1.0 

1.5 

2.216974 

2.822212 

3.219365 

3.729709 

4.240053 

4.750397 

5.260741 

5.771085 

6.220706 

6.658950 

7.155075 

7.651199 

8.353455 

9.288410 

9.424778 

NOLTR 71 -2 

TABLE 1 

dx = wA COS(ü)X) 

Method (ID 

YT-TRUE YOCOMPUTED 
sin(x) sin(x) 

0.0 0.0 

.479426 .479426 

.841471 .841471 

.997495 .997495 

.798391 .798391 

.313979 .313979 

-.0776944 -.0776946 

-.554795 -.554795 

-.890508 -.890508 

-.999278 -.999278 

-.853385 -.853384 

-.490009 -.490009 

-.0624391 -.0624388 

.366984 .366985 

.765546 .765546 

.979510 .979510 

.877835 .877835 

.135945 .135946 
™ L-9 ^   ^"8 

(YT-YC) 

0.0 

22x10 

92x10 

18x10 

24x10 

16x10 

17x10 

13x10 

47x10 

-59x10 

-16x10 

-23x10 

-25x10 

-24x10 

-18x10 

-92x10 

29x10 

-61x10 

-9 

-9 

-8 

-8 

-8 

-8 

-8 

-9 

-9 

-8 

-8 

-8 

-8 

-8 

-9 

-8 

-8 

-66x10 
-8 
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0.0 

0.5 

1.303726 

2.309936 

3.316146 

4.322356 

5.297378 

6.225618 

7.153858 

8.082099 

9.102580 

9.424778 

NOLTR 71-2 

TABLE 1 

dx ■ aiA cos(wx) 

Method (III) 

YT=TRUE YC=C0MPUTED 
sin(x) sin(x) 

0.0 0.0 

.479426 .479426 

.964548 .964548 

.739048 .739048 

-.173668 -.173668 

-.924896 -.924895 

-.833718 -.833717 

-.0575354 -.0575345 

.764763 .764763 

.974094 .974094 

.316653 .316653 
™ ,n-9 ,, ,^-8 

(YT-YC) 

74x10 

0.0 

12x10 

91x10 

77x10 

-46x10 

-10x10 

-11x10 

-83x10 

-41x10 

-23x10 

-51x10 

-78x10 

-9 

-9 

-9 

-8 

-7 

-7 

-8 

-8 

-8 

-8 

-8 
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0.0 

0.381345 

1.194792 

2.008240 

2.821688 

3.322058 

4.055814 

4.710873 

5.262094 

5.953946 

6.645797 

7.337648 

8.029500 

8.721351 

9.413203 

10.105054 

10.796905 

11.488757 

12.180608 

12.872459 

13.564311 

14.256162 

14.948014 

15.639865 

15.707963 

NOLTR 71-2 

TABLE 2 

dx2 
-y 

Relative Trunca tion Error 

YC=COMPUTED 
sin(x) 

YT=TRUE 
sin(x) 

0.0 0.0 

.372169 .372169 

.930140 .930139 

.905838 .905838 

.314477 .314476 

-.179488 -.179488 

-.792088 -.792087 

-1.00000 -.999999 

-.852680 -.852679 

-.323324 -.323324 

.354718 .354717 

.869636 .869635 

.984638 .984636 

.646836 .646835 

.0115755 .0115752 

-.629009 -.629008 

-.980332 -.980330 

-.880833 -.880831 

-.376267 -.376266 

.301332 .301332 

.840358 .840356 

.992931 .992928 

.688887 .688885 

.0680464 
-* ,ft-8 

.0680457 

(YT-YC) 

0.0 

27x10 

-22x10 

-52x10 

-39x10 

11x10 

72x10 

12x10 

11x10 

61x10 

-30x10 

76x10 

-12x10 

-17x10 

-13x10 

-32x10 

99x10 

20x10 

21x10 

12x10 

-34x10 

-19x10 

-27x10 

-22x10 

-69x10 

-50x10 

-9 

-8 

-8 

-8 

-9 

-8 

-7 

-7 

-8 

-8 

-7 

"7 

-7 

-8 

-8 

-7 

-7 

-7 

-8 

-7 

-7 

-7 

-8 

-8 
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0.0 

1.008358 

2.030260 

3.052163 

4.074065 

5.095968 

6.117870 

7.139773 

8.161675 

9.183578 

10.205480 

11.227383 

12.249285 

13.271187 

14.293090 

15.314992 

15.707963 

NOLTR 73 .-2 

TABLE 2 

dx2 
-y 

Absolute Truncation Error 

YOC0MPUTED YT=TRUE 
sin(x) sin(x) 

0.0 0.0 

.845958 .845957 

.896293 .896290 

.0893123 .0893108 

-.803100 -.803096 

-.927340 -.927331 

-.164568 -.164563 

.755619 .755612 

.953050 .953035 

.238876 .238868 

-.703788 -.703778 

-.973273 -.973253 

-.311811 -.311799 

.647905 .647894 

.987895 .987869 

.382952 .382935 
it   ,^-7 *-. -,^-8 

(YT-YC) 

76x10 27x10 

0.0 

-91x10 

-30x10 

-16x10 

46x10 

89x10 

43x10 

-75x10 

-15x10 

-79x10 

96x10 

21x10 

12x10 

-11x10 

-27x10 

-17x10 

-74x10 

-8 

-6 

-6 

-6 

-6 

-6 

-7 
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0.0 

2.3055 

A.6901 

7.0748 

EQUATION NO. 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 
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TABLE 3 

YC=*COMPUTED y 

0.0 

1.0 

1.0 

1.0 

0.0 

.742059 

-.670335 

.329598 

12.3342 

1.19557 

-.999753 

-.0222392 

-.0522659 

113.559 

1.73874 

.711517 

.702670 

.00683235 

1188.93 

2.08875 

YT-TRUE y 

0.0 

1.0 

1.0 

1.0 

0.0 

.742058 

-.670335 

.329598 

12.3342 

1.19557 

-.999753 

-.0222391 

-.0522659 

113.559 

1.73874 

.711516 

.702669 

.00683235 

1188.93 

2.08875 

(YT-YC) 

0.0 

0.0 

0.0 

0.0 

0.0 

-13x10 

91x10 

-20x10 

15x10 

19x10 

-8 

-9 

-9 

-7 

-8 

34x10 

63x10 

-37x10 

35x10 

20x10 

-8 

-9 

-10 

-6 

-8 

-31x10 

-43x10 

-18x10 

59x10 

20x10 

-8 

-8 

-11 

-5 

-8 
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x 

9.4595 

11.8442 

14.2289 

15.7080 

EQUATION NO. 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

1 

2 

3 

4 

5 
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TABLE  3 

YOCOMPUTED y 

-.0347456 

-.999397 

.815249x1 

12839.3 

2.34751 

,-3 

-.660999 

.750388 

.922205x10 

139289. 

2.55289 

.995795 

-.0916176 

.100723x10 

-4 

-4 

.151197x10' 

2.72320 

.797718x1 

-1.00000 

.251792x10 

.663563x10' 

2.81589 

-6 

-5 

YT=TRUE y 

-.0347457 

-.999396 

.815249x10 

12839.3 

2.34751 

-.660999 

.750387 

.922205x] 

139289. 

2.55289 

-3 

-4 

.995794 

-.0916177 

.100723x10 

.151197x10' 

2.72320 

.587949x1 

-1.00000 

.251792x10 

.663564x10' 

2.81589 

-4 

-6 

-5 

(YT-YC) 

^-9 -98x10 

71x10 

43x10 

86x10 

20x10 

-8 

-12 

-4 

-8 

70x10 

-56x10 

14x10 

12x10 

20x10 

-8 

-8 

-12 

-2 

-8 

-11x10 

-90x10 

27x10 

15x10 

20x10 

-7 

-9 

-13 

-1 

-8 

-21x10 

12x10 

87x10 

75x10 

20x10 

-8 

-7 

-14 

-1 

-8 

24 
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APPENDIX A 
LISTING OF EXAMPLE NO, 1 WITH CONTROL CARDS 

FOR THE NOLOS SYSTEM USED AT NOL 

CCAFNOL,Tl00»CM60000.SYSTEM,039,ORLOW. 
ATTACH( AOCtNOLLUN) 
COPYN(OtDEF.ABC)      FIRST PARAMETER IS THE NUMBER «0» 
RETURN(ABC) 
FTN(L) 
LOAO(LGO) 
DFF. 
• RECORD SEPARATOR = (7-8-9) PUNCH IN COL. 1 
REWIND(ARC) 
FN0L3,1»ABC 
• RECORD SEPARATOR = (7-8-9) PUNCH IN COL. 1 

PROGRAM EX1 (INPUT.OUTPUT) 

C 
C       EXAMPLT NO. 1 
C       SOLVE THE INITIAL VALUE PROBLEM DY/Dx=A*W*COS(W»X) 
C      USING THE FOLLOWING METHODS 
C 
C      (I)   4TH ORDER RUNGE-KUTTA (CONSTANT STEP) 
C       (II)  4TH ORDtR ADAMS-MOULTON METHOD (VARIABLE STEP) 
C       (III) <*TH ORDER RUNGE-KUTTA (VARIABLE STEP) 

C 
DIMENSION Y(20)*D(2P) 
EXTERNAL DER I V•TERM,OUTPUT 
COMMON AtW 
A = l . 
W=l . 
DO 200 J=lt3 

C NUMBER OF EQUATIONS 
N»l 

C INITIAL STFP SIZE 

6«.l 
C NUMBER OF EXTRA Y'S 

L = 2 
C NUMBER OF ACCEPTED STEPS TAKEN BETWEEN PRINTS 

M = 5 

C ERROR WINDOW EXPONENT 
<NF=5. 
Y( I )=0. 
Y(N+3)=.01 
X = 0. 
PRINT 1000 

1000 FORMAT (1H1,4X•1HX,17X,9HYT=TRUE Y»12X♦13HYC=C0MPUTED YtllX» 
1 10H    (YT-YO) 
CALL FN0L3 <JtN,G»LtM.XNE»XtY.DtDERI V,TERMtOUTPUT) 

200 CONTINUE 
STOP 
FNP 
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APPENDIX A CONTINUED 

SUBROUTINE DERIV <X,Y,D) 
DIMENSION D(1) 
COMMON A,W 
D(l)»A»W*COS(W*X) 
RETURN 
END 
SUBROUTINE TERM (X.YtD.T) 
DTMFNSION Y(1) 
COMMON A9W 
T*X-9.424778 
Y(5)*A*SIN(W»X) 
Y(6)*Y(5)-Y(1) 
RETURN 
END 
SUBROUTINE OUTPUT (X»Y»D,ERROR,N,L,H) 
DIMFNSION Y(l) 
PRINT 1000» XtY(5).Y(1),Y(6) 

1000 FORMAT (1H tFlO.6»1 OX,3<E13.6• 10X ) ) 
RETURN 
END 

ORLOW   039   CCAFNOL     END OF FILE = (6-7-8-9) PUNCH IN COL« 1 
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APPENDIX B 
LISTING OF EXAMPLE NO. 2 

PROGRAM EX2(INPUT,OUTPUT) 
C      FXAMPLE NO. 2 
C 
C SOLVE D**2Y/DX**2=-Y 
C 
C       USING ADAMS-MOULTÖN PREDICTOR CORRtCTOR WITH 
C      STEP SIZE CONTROLLED BY 
C 
C (I ) RELATIVE ERROR 
C (II) ABSOLUTE ERROR 
C 

DIMENSION Y(30) ,D(30) 
EXTERNAL DER I V,TERM»OUTPUT 

C ADAMS-MOULTCN METHOD 
J«2 

C NUMBER OF EQUATIONS 
N«2 

C MINIMUM RELATIVE ERROR DIVISOR 
Y(N+3)=.0Ol 

C NUMBER OF EXTRA Y'S 
L = 2 

C NUMBER OF ACCEPTED STEPS bETWEEN PRINT CYCLES 
M=10 

C EXPONENT ERROR WINDOW 
XNE=5. 

C INITIAL STEP SIZE 
G*.D1 

C INITIAL CONDITIONS 
X = 0. 
Y(1)=0. 
Yt2)»l. 
PRINT 1000 

1000 FORMATf 1H1 ,4X,1HX,13X,13HYC=C0MPUTED Y , 16X,9HYT*TRUE YtllXt 
1        10H   (YT-YO) 
CALL FNOL3(J,N,G,L,M,XNE,X,Y,D,DERI V,TERM»OUTPUT) 

C RESET THE PRINTING OPTION 
M = 0 
Y(N+2)=1. 

C RESET THE INITIAL CONDITIONS 
X = 0. 
Y( 1 )=0. 
Y(2)«l. 

C rHAMGF TO APSOLUTF ERROR 
Y(N+3)=-Y(N+3) 
PRINT 1000 
CALL FNOL3(J,N,G,L,M,XNE,X,Y,D,DER IV,TERM,OUTPUT) 

STOP 
END 
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APPENDIX B CONTINUED 

SUBROUTINE DERlV(XtY.D) 
DIMENSION Yll).D(l) 
D( 1)=Y(2) 
D(2)=-Y(1) 
RETURN 
END 
SUBROUTINE TERM(X,Y,D,T) 
DIMENSION Y(1) 
T=15.707963-X 
Y(3)=X 
Y(6)=SIN(X) 
Y(7)=Y(6)-Y< 1 ) 
RETURN 
END 
SUBROUTINE OUTPUT(X,Y»D»ERROR,NfLtH) 
DIMENSION Y(1) 
LF=N+4 
Ll=N+3+L 
PRINT 1000» X.Y(1 )t(Y(I )»I»LF,LL) 

1000 F0RMAT(1H ,F10.6»10X,3(E13.6♦10X)) 
RETURN 
END 
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APPENDIX C 
LISTING OF EXAMPLE NO. 3 

PROGRAM EX3(INPUT»OUTPUT) 
C      EXAMPLE NO. 3 
C 
C      SOLVE THE SYSTEM OF FIRST ORDER EQUATIONS 
C 
C DY(1)/DX=Y(2) 
C DY(2)/DX=-Y(1) 
C DY(3)/DX*(1,/(X+1.)-1.)*Y(3) 
C DY(4)/DX=Y(4)-X+1. 
C DY(5)/DX«1./<X+1.) 
C 
C      USING ADAMS-MOULTON PREDICTOR CORRECTOR METHOD WITH 
C       STEP SIZE CONTROLLED BY RELATIVE ERROR 
C 

DIMENSION Y(30)»D(30) 
EXTERNAL DER IV♦TERM,OUTPUT 

C ADAMS-MOULTON METHOD 
J = 2 

C NUMBER OF EQUATIONS 
N = 5 

C MINIMUM RELATIVE ERROR DIVISOR 
Y(N+3)=.01 

C NUMRFP OF EXTRA Y«S 
L=10 

C NUMBER OF ACCEPTED STEPS BETWEEN PRINT CYCLES 
M = 40 

C        EXPONENT ERROR WINDOW 
XNE=5. 

C INITIAL STEP SIZE 
G=.02 

C INITIAL CONDITIONS 
X = 0. 
Y( 1 )=0. 
Y(2)=l. 
Y(3)=l . 
Y(4)=l . 

Y(5)«0. 
PRINT   ior>o 

10?n   ropy.ATf 1 HI .4X.1HI , 1 3X ♦ "> 4HYC=COMPUTFD   Y I . 1 4X . 1 OHYT=TRUE   YM1X, 
1 10H (YT-YO) 

CALL   F.\OL3( J»N»G»L »M.XNEtX» Y.D.DERI V, TERM »OUTPUT) 
r,TOP 
END 

Ol 
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APPENDIX C CONTINUED 

SUBROUTINE DERIV(X,Y»D) 
DIMENSION Y(1) »D(l ) 
D( 1 )»Y(2) 
D(2)=-Y(1) 
D(3) = (1 ./(X+l.)-l.)*Y(3) 
D(4)=Y(4)-X+1. 
D(5)=1./<X+1.) 
RETURN 
END 
SUBROUTINE TERM(X.Y*D»T) 
DIMFNSION Y(l) 
T=X-5.»3.141502536 
Y(9)«SIN(X) 
Y( 10)=C0S< X) 
Y(11)=(X + l.)*EXP(-X) 
Y( 12)=X+EXP(X) 
Y(13)=AL0G(X+1.) 
DO 10 1=14,18 
Y( I )=Y( I-5)-Y( 1-13) 

10 CONTINUE 
RETURN 
END 
SUBROUTINE OUTPUT(X,Y,D•ERROR»N,L.H) 
DIMENSION Y(l) 
PRINT 1000» X 

1000 FORMAT(lHO,50X»3HXe »F7.4) 
J=N + 3 
K=?*N+^ 
DO 20 I*ltN 
J = J+1 
K = K+1 
PRINT 2000» I»Y( I ) tY(J) »Y(K) 

2000 FORMAT« 1H ♦ I 5»1 5X»3(E13.6 ♦ 10X ) ) 
20 CONTINUE 

RETURN 
^ND 
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APPENDIX D 
LISTING OF FNOL3 

SUBROUTINE FNOL3 ( J ♦ NN ,6 ,L , MPR , XNE »X , Y ,D»DER I V » TERM, OUTPUT ) 
C 001 J»INTEGRATION METHOD CONTROL 
C 002 NN«NUMBER OF SIMULTANEOUS DIFFERENTIAL EQUATIONS 
C 003 GeFIRST INTERVAL OF INTEGRATION 
C 004 L-NUMBER OF Y$S GREATER THAN N TO BE PRINTED 
C 005 MPR=PRINT FREQUENCY 
C 006 XNE«CONTROL FOR INTERVAL OF INTEGRATION 
C 007 X*INDEPENDENT VARIABLE 
C 008 Y-DEPENDENT VARIABLE 
C 009 D«ARRAY CONTAINING DERIVATIVES 
C 010 DERIV»SUBROUTINE IN WHICH DIFFERENTIAL EQUATIONS ARE FOUND 
C Oil TERM=SUBROUTINE FOR TERMINATION CONDITION 
C 012 OUTPUT«SUBROUTINE FOR PRINTING OUTPUT 
C     NRET=TERM LOOP COUNTER 
C     NPR=COUNT OF STEPS SINCE LAST PRINT 
C     PC*Y(N+1)»PRINT CONTROL OTHER THAN STEP COUNT 
C     JJ«J-2=0 FOR AM.-l FOR RK.+l FOR RK2 
C     MK*AM RK STEP COUNT 
C     XD = DP FORM OF X 
C THIS SUBROUTINE CAN ALSO BE RUN IN DOUBLE PRECISION BY REMOVING 
C THE »C« IN COLUMN 1 ON THE DOUBLE PRECISION STATEMENT 
C     DOUBLE PRECISION XD , YD,YP,YC»YK,H,HC•XS»XDS.HS,HNfHD24»HD6 

DIMENSION C(3) »Y(30) »YD(30) ,YP(30) »YC(30> .D(50).DM(30.4) »DK(30»M 
1tERROR(30),YK(30) 

DATA   EP6.FPU.M4/1.E-6,1.E-l1.-4/ 
DATA   tC(K)9K*lt3)/2*»5tl«/ 
DATA HMAX5/1.F35/ 
NHTSsO 
FP2=0. 
N*NN 
JJ=J-2 
H = G 
HN = H 
MK = 1 
NRFTsMA 
JTEST=1 
IF (JJ .LT. 0) JTEST-4 
IF (XNE.EQ. 0.) GO TO 15 
EC=Y(N+3) 
EUP=10.**(-XNF) 
ELO=EUP*.00l 
FM=EL0*31.6227766 

15 XD=X 
XS = XD 

00 2 0 F«ltN 
ERROR(I)=0. 

20 YD( I )«Y(I ) 
CALL DERIV(X.Y.D) 
CALL TERM (X.Y.D.F) 

C     PRINT 

D-l 
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APPENDIX D CONTINUED 

50 CALL OUTPUT(X,Y.D.ERROR,N,L»H) 
IF (NRET) 65.60.55 

55 PRINT 3000» HN 
3000 FORMAT« 108H1EXECUTI ON TERMINATED BECAUSE INTERVAL OF INTEGRATION L 

1ESS THAN l.OE -6 TIMES INDEPENDENT VARIABLE (X).  H «»1PE15.7) 
STOP 

60 RETURN 
65 NPR = 0 

IF (MPR ,LE. 0) PC=Y(N+1) 
100 IF (JTEST .EQ. 5 «AND, H .NE. HN) GO TO 455 

IF (JJ .GE. 0) H=HN 
IF (MK .NE. 0 .OR. JJ .NE. 0) GO TO 300 

C THE ADAMS MOULTON METHOD 
200 HD24=H/24. 

JAM = 0 
DO 210 1=1»N 
YPI=(55.*DM( I,1 )+37.*DM( I,2))-(59.*DM( I»3)+9.*DM( I»4) ) 
YP( I )=YD( I )+HD24*YPI 
Y( I)=YP( I ) 

210 CONTINUE 
X*XD+H 
CALL DERIV(X,Y»DM(1,4) ) 
DO 220 1 = 1 »N 
YPI=(9.*DM(I»4)+19.*DM(I,1)+DM(I»2))-5.*DM(I»3) 
YC(I)=YD(I)+HD24*YPI 
ERROR(I ) = (YP( I)-YC(I))/14. 

C THIS ADDS IN A 2D CORRECTION 
YC(I)*YC(I)+ERROR(I) 

220 CONTINUE 
IF (XNE.NE..0) GO TO 700 
GO TO 455 

C THE RUNGE KUTTA METHOD 
300 "30 TO (301.309.308.309,303) »JTEST 
301 DO 302 1 = 1.N 

YK(r) = YD<I) 
302 CONTINUF 

XDS=XD 
GO TO 309 

303 DO 304 1 = 1.N 
Y<(T )=YC< I ) 

304 CONTINUE 
XDS=XD+H 

308 HS=H 

GO TO 320 
309 X=XD 

JAM=1 
DO 310 1=1.N 
Y( I )=YD( I ) 
DK( I»1)=D( I ) 

310 CONTINUE 
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IF (JTEST .LE. 2) CALL DER I V(X,Y,DK) 
IF (MK .GT. 1 .OR« JTEST .GT. 1) GO TO 320 
DO 315 1=1,N 
DM(I,4)=DK(I ,1 ) 

315 CONTINUE 
320 )0 335 K = 2,4 

HC«H*C(K-1 ) 
DO 330 I«1,N 
Y( I )«YD( I ) ♦ HC*DK( I ,K-1) 

330 CONTINUE 
X*XD+HC 
CALL DERIV(X,Y,DK<1,K) ) 

335 CONTINUE 
HD6*H/6. 
DO 340 I = 1 »N 
YPI=DK(I,1 )+DK( I,4)+2.*(DM 1,2 )+DK( 1,3)) 
YC(I)*YD(I)+HD6*YPI 

340 CONTINUE 
GO TO (360,390.370,455,370),JTEST 

360 DO 365 1 = 1,N 
YP( I)BYC( I ) 

365 CONTINUE 
JTEST*3 
GO TO 308 

370 DO 380 1=1,N 
YD( I )=YP( I ) 
YP( I )=YC(I ) 

380 CONTINUE 
H«HS 
XD-XD+H 
JTEST=2 
IF (MK .EQ. 1) GO TO 309 
GO TO 451 

390 DO 400 1=1,N 
FRROR(I)=(YC(I)-YP(I))/l5. 
YC( I )=YC( I )-»»ERROR { I ) 
YP( I )=YC(I ) 

400 CONTINUE 
JTEST=5 
IF (XNE.NE..0) GO TO 700 
 ACCEPT THE STEP SIZE 
450 IF (JAM .EQ. 0) GO TO 455 

IF (MK .EQ. 3 .AND. JJ .EQ. 0) GO TO 455 
TF (MK .NE. 1) no TO 303 
[F (JTEST .EQ. 1) GO TO 455 

451 DO 45? 1=1,N 
Y( I )=YD( I ) 

452 CONTINUE 
GO TO 466 

455 DO 459 NQ=1 ,N 
YD(NO)=YC(NQ) 
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Y(NQ)=YD(NQ) 
459 CONTINUE 

IF (JJ .OF. 0) JTFST=1 
IF (MK .NE. 0 .OR, JJ .NE. 0 -OR. NRET »NE« M4) GO TO 465 
DO 460 1=1»N 
DM(I,4)=DM(I»2) 
DM(I»2)*DM<I,3) 
DM{ I,3)=DM(I ,1 ) 

460 CONTINUE 
465 XD=XD+H 
466 X=XD 

IF (MK .EQ. 3) MK=0 
CALL DERIV(X*Y,D) 
DO 470 1=1»N 
DM( I ,MK + 1 )=D( I ) 

470 CONTINUE 
FP = F 
CALL TERM (X»Y»D.F) 

C DO YOU TERMINATE 
500 IF (ABS(F) .LE. EP6) GO TO 800 

IF (FP .EQ. 0.) GO TO 510 
IF (NRET .NE. M4 »OR. F*FP .LT. EP11) GO TO 805 

510 XS=XD 
IF (MK .NE. 0 .AND. H .EQ. HN) MK«MK+1 

C DO YOU PRINT 

600 NPR=NPP+1 
IF (MPR .LE. 0) GO TO 610 
IF (NPR .GE. MPR) GO TO 50 
GO TO 100 

610 IF (AB5(Y(N+l)-PC) .GE. Y(N+2)) GO TO 50 
GO TO 100 

C DETERMINING THE 5TEP SIZE 
700 HB = HMAX5 

DO 760 I = 1»N 
2=ABS(ERR0R(I)) 
IF (YClI) .EQ. 0.) GO TO 720 
ZZ«YC(I) 
ZZaABS(ZZ) 
IF (EC) 720*710*705 

705 IF (EC .GT. ZZ) ZZ«EC 
710 Z=Z/7Z 
720 IF(Z.GT.ELO.AND.Z.LT.EUP) GOTO 750 

HB = AMIN1(HB*EM/(Z+EP11)) 
GOT0760 

7<sn   HB=AMIN1(HBtl.) 
760   CONTINUE 

IF (HB .NE. 1.) GO TO 765 
NHT5=0 
GO TO 450 

765 HN=H*HB*».2 
IF (MK .NE. 1) JTEST=1 
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MK«1 
IF (HB.LT.l. ) GOTO 770 
IF (ABS(HN) .GT. A6S(4.*H)) HN=4.*H 
NHTS«0 
GOTO 450 

770 HEPS»ABS(X»EP6> + EP11 
IF (ABS(HN) .LT. ARS(H/4.)) HN*H/4. 
IF (APS(HN) .GT. HFPS) GO TO 790 
NHTS = NHTS + 1 
IF (NHTS .LE. 10) GO TO 780 
NRET = 1 
GO TO 450 

•'80 HN=SIGN(HEPS.HN) 
IF (NHTS .GT. 1) GO TO 450 

TOO    IF (NHTS .GT. 3) NHTS-O 
IF (JAM .TO. 0) GO TO 100 
00 795 1=1.N 
YD( I )=YK(I ) 

*r95 CONTINUE 
XD=XDS 
JTEST=1 
GO TO 100 
 THE TERMINATION LOOP 
BOO NRFT=0 
805 IF (NRET .LT. 0) GO TO 806 

H=XD-XS 
GO TO 50 

806 IF(F*FP.LT.0.) GOTO 810 
IF (F*FP2.LT.O.) GOTO 820 
GO TO 800 

810 FP2 =FP 
HP =H 
GOTO 830 

820 FP =FP2 
HP =H + HP 

830 NRET=NRET+1 
H=HP*F/(FP-F) 
JTEST=4 
GOTO 300 
END 
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APPENDIX E 

FNQL3 VS. FNOL2 

8-1■  FNOL3 does not allow the step size to be changed by more than a factor 
of four.  In FN0L2, the step size is allowed to change by any factor, which 
can cause the step size to be too large or too small in some cases. 

15-2.   If the step size is too small, FN0L3 accepts the step and the step size 
is Increased for the next step.  FN0L2 does not accept the step. 

H-3.   FN0L3 calls the output routine only if the step was accepted.  FN0L2 
calls the output routine and then checks to see if the step is acceptable. 

E-4.   In FN0L3, the truncation errors are added at each step to the dependent 
variables.  FN0L2 does not add the truncation errors to the dependent variables. 

K-5.   FN0L3 allows the step size to be changed when using the Runge-Kutta 
method.  The step size cannot be changed using the Runge-Kutta method in FN0L2. 

K-6.   In FN0L3, the option was added that if relative error is used to adjust 
the step size and the user sets Y(N+3)«e(e > 0), then whenever |Y(I)| < Y(N+3), 
relative error is calculated by dividing truncation error by Y(N+3) rather than 
Y(I).  Otherwise perfect accuracy would be required of every variable passing 
through 0. 

F.-7.   FN0L3 uses XNE, a floating point rather than an integer, to allow more 
control over the step size. 
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APPENDIX F 

FNOL3 ARGUMENT LIST SUMMARY 

iUlGUMENT TYPE INPUT OUTPUT 

J INTEGER 

INTEGER 

REAL 

INTEGER 

INTEGER 

REAL 

REAL 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

N 

G 

L 

M 

XNE 

X YES 

Y REAL YES YES 

D REAL NO YES 

DERIV 

TERM 

OUTPUT 

REMARKS 

The integration method 

The number of equations 

The initial step size 

The additional output Y's 

The print frequency 

The control for step size 

The independent variable 

The dependent variables 

The derivatives 

CALL DERIV(X,Y,D) 

CALL TERM(X,Y,D,T) 

CALL OUTPUT(X,Y,D,ERROR,N,L,H) 
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